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FOREMORD 

I . This document is  one of sixteen sections tha t  comprise t h e  f ina l  
report  prepared by the  Minneapolis-HoneyweU. Regulator Cmpany f o r  the  
National Aeronautics and Space Administration u d e r  contract  NASw-563. 
The report  is issued i n  the  following s ixteen sect ions t o  f a c i l i t a t e  
updating as progress warrants: 

1541-aZ 1 S~mmary 

1541-TR 2 Control of Plants Whose Representation Contains Derivatives 
of the  Control Variable 

1541-TR 3 Modes of Finite Response T i m e  Control 

1541-TR 4 

1541-TR 5 

1541-TR 6 

A Suff ic ient  Condition i n  Optimal Control 

Time O p t i m a l  Control of Linear Recurrence Systems 

T i m e - O p t i m a l  Baunded Phase Coordinate Control of Linear 
Recurrence Systems 

1541-TR 7 Penalty Functions and Bounded Phase Coordinate Control 

1541-TR 8 Linear Programming and Bounded Phase Coordinate Control 

1541-TR 9 Time O p t i m a l  Control with Amplitude and Rate Limited Controls 

1541-TR 10 A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem i n  the  Calculus of Variations 

l54l-TR 11 A Bote on System Truncation 

1541-TR 12 Sta t e  Determination fo r  a Flexible Vehicle Without a Mode 
Shape Requirement 

1541-TR 13 An Application of the Quadratic Penalty Function Cr i te r ion  
t o  the  Determination of a Linear Control f o r  a Flexible Vehicle 

1541-TR 14 Mnimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

1541-TR 15 An Alternate Derivation and Interpretat ion of the  D r i f t - M i n i m  
Principle  

1541-TR 16 A Minimax Control for  a Plant Subjected t o  a Known Load Disturbance 

Section 1 (1541-TR 1) provides the motivation f o r  the  study ef" I O r t S  

and objectively discusses the significance of the r e s u l t s  obtained. 
r e su l t s  of inconclusive and/or unsuccessful investigations a r e  presented. 
Linear programming is  reviewed i n  d e t a i l  adequate for sect ions 6 ,  8, arid 16. 

"he 

/ 
It is  shown i n  sect ion 2 tha t  the prrely formal procedure f o r  synthe- 

s iz ing  an optimum bang-bang control ler  f o r  a plant  whose representation 
contains derivatives of the  control var iable  yields a correct  resu l t .  
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In  section 3 it is  shown that the  problem of controll ing rn cornpments 
(1 < m < n),. of the  state vector f o r  an n-th order l i nea r  constant coei ' f ic iwt  
plant,  t o  zero i n  f ini te  t i m e  can be reformulated as a problem of controllirig 
a s ingle  component. 

Section 4 shows Pontriagids ~aximum Principle i s  often a su f f i c i en t  
condition f o r  optimal control  of l i n e a r  plants. 

Section 5 develops an algorithm f o r  comprting the t i m e  optimal control  
functions f o r  plants  represented by l i nea r  recurrence equations. 
may be t o  convex t a rge t  sets defined by quadratic forms. 

Steering 

I n  section 6 it is shown t h a t  l i nea r  inequality phase constraints  
can be transformed i n t o  similar constraints on the control variables.  
Methods f o r  finding controls are  discussed. 

Existence of and approximations t o  optimal bounded phase coordinate 
controls by use of penalty functions a re  discussed i n  sect ion 7. 

I n  section 8 a maximum principle is proven f o r  time-optimal control 
with bounded p p s e  constraints.  An existence theorem i s  proven. "he 
problem solut iun is reduced t o  l inear  programming. 

A backing-out-of-the-origin procedure f o r  obtaining t r a j ec to r i e s  f o r  
time-optimal control  with amplitude and rate limited control variables is  
presented i n  sect ion 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem i n t o  a standard calculus of var ia t ions problem. 

A mathematical method f o r  assessing the  approximation of a system by 
a lower order representation i s  presented i n  section ll. 

Section 12 presents a method f o r  determination of the s t a t e  of a 
f l ex ib l e  vehicle that  does not require m o d e  shape information. 

The quadratic penalty function c r i t e r i o n  is applied i n  sect ion 13 t o  
develop a l inea r  control l a w  f o r  a f lex ib le  rocket booster. 

In  sect ion 14 a method f o r  feedback control  synthesis f o r  minimum load 
disturbance e f f ec t s  is  derived. Examples are presented. 

Section 15 shows t h a t  a l inear  fixed gain cont ro l le r  f o r  a l i n e a r  
constant coeff ic ient  plant may yield a ce r t a in  type of invariance t o  
disturbances. 
the  concept of complete control labi l i ty .  
obtained as a spec i f ic  example. 

Conditions fo r  obtaining such invariance are derived using 
The d r i f t  minimum condition is  

I n  section 16 l i n e a r  programming is  used t o  determine a control function 
t h a t  minimizes the effects  of a known load disturbance. 
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AND 

BOuwIlED PHASE COORDINATE CONTROL* * by D. L. RuSsell 

ABSTRACT 

A maximum principle for time-optimal bounded-phase coordinate 

control of ordinary linear differential equation systems and 

an existence theorem are proven. 

are then approximated by recurrence equations so the problem 

of obtaining "optimal" trajectories by backing out of the origin 

can be reduced to one of linear programming. 

Plant differential equations 

& 
IlJTRODUCTION 

The plant considered is represented by the vector differential 

e quat ion 

2 = A(t)x + B(t)u + f(t) (1) 

where x and u are n-and m-vectors, respectively; A(t) and B ( t )  

are continuous n x n and n x m matrices; and f(t) is an n-vector. 

The vector x is called the phase variable; u the control variable. 

It is assumed that f(t) ia measurable on some interval 1 and 

bounded on every compact subinterval of I; that u(t) is measurable 

on various subintervals to I t  

of definition of the u's); and that u(t) lies in a non-empty, 
~"""-""""""'""""-'"' 

$- Research Consultant , Minneapolis-Honeywell Regulator Company, 

tl in I (which are the domains 

Prepared under contract NASw-563 f o r  the NASA. 

Minneapolis, Minnesota 
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compact, convex restraint set O c p  which contains more than 

one point. Trajectories corresponding to u(t) are denoted by x(t), 

c1 is a closed, convex, non-empty subset of Rn. The initial 

point x(to) = xo E G. 

TCG. 

u such that x(to) = xo and x(t,) f T and x(t) E (P for to 5 t 
The objective is to determine a control function u*(t) E A 

defined on [tz, ty] such that tP - t: 5 tl - to for every other 
u E A .  

T is a closed, non-empty target set and 

It is assumed xo f T. A is the set of all control functions 

tle 

The method developed herein permits trajectories to be 

determined by backing out of the origin. 

equations (1) are approximated by recurrence equations. 

control variables are constant over sample intervals and the phase 

bounds are only enforced at the endpoints of  these intervals. The 

trajectories thus determined are approximations to the desired 

optima1,trajectories. 

The plant differential 

The 

Theorem 1 below shows that optimal trajectories are extremal 

in the sense of Definition 1. 

of extremal trajectories is established. 

equations are replaced by recurrence equations and the problem 

solution is reduced to one of linear programming. 

Then the objectives for existence 

The plant differential 

THE MAXIMUM PRINCIPLE 

The maximum principle is a statement that controls that 

displace the plant (equation 1) the maximum distance in a given 

direction from an initial point during a fixed time interval are 

necessarily extremal controls; the extremal controls being de- 
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fined beforehand e 

It is first assued the i n i t i a l  t i m e ,  to, is fixed f o r  a l l  

The set of a t t a inab i l i t y ,  K(t ,xo) , is  then controls,  u. 

defined a s  the set of x ( t )  corresponding t o  control lers  u(7)  

defined on to - -  < T < t w i t h  U(T) E 42 and such tha t ’  x(?) e a 
f o r  to - -  < T < t o  K(t,xo) i s  closed, bounded, convex, and var ies  

continuously w i t h  t . 

It is  c l ea r  that the smallest number tl with K(tlYxo) f lT # @ 

i s  the minimal t i m e  required t o  br ing xo i n t o  T, Each optimal 

control u*(t)  has the  property that x(t+,) ’lies on the boundary 

of K(t+,,xo). 

The adjoint system for the system (1) is 

pi.’ = +’ A(t) 

where @’ indicates  the transpose of tl/. 

DEFINITION 1. 

SZ with x(t) l y ing  i n  Q on [t, ,tP] i s  called extremal i f  there 

e x i s t s  a solution tp’ of (2 )  defined on [ t0 , t f ]  such tha t  

A control u*(t) defined on [to,tl] and lying i n  

Jt4: @’(s) B(s) u*(s)ds > 1 tP * ’ (s )  B(s) u(s)ds  - 

fo r  a l l  other  u ( t )  lying i n  R with x ( t )  lying i n  0 on [to,tfJ. 

THEOREM 1, 

[to,tfJ i s  such tha t  X”(t1) E a K(tfyxo) ,  then the cont ro l le r  

u*(t)  i s  extremal. 

If the response *(t) t o  the control u*(t)  defined on 

PROOF: 

K(t-f ,  xo) i s  convex. 

7~ a t  @ ( t p ) .  

The assumptions t h a t  G and 42 are  convex implies t h a t  

Thus K(t+ , ,  x0) may be supported by a plane 

@l i s  taken as the unit outward normal vector t o  n e  



Then It is clear by convexity of K(tf,xo) that for every point 

Q E K(tI,xo), 

dr:X)b(tf) 2 @CQ ( 3 )  
F r o m  (1) 
x?(tT)  = @(W)X + @ ( t f )  ?' @-'(S)[B(S)U*(S) + f(s)]ds 

where @(t) is the fundamental solution matrix of the homogeneous 

equation corresponding to (1) with @(to) = I. 

(4) 1 0  
' to 

+'(t) is taken 

as the solution of (2) such that @'(tr) = 9,.  / Then (3) is re- 
written 

x+(tf) = 9 ' ( t r )  @ ( t f ) X 0  + 

- q'(t!) @(tf) I t; @(s)-l[B(s)u*(s) + f(s)]ds > 
(5) 

for all other controllers u(t) defined on [to,t~] such that 

u(t) lies in $2 and x(t) lies in Q .  

BY writing * / ( t )  = +;@(t)-l for an appropriate *o, / it is  

found that 

t!f tT s 9%) B(s) u*(s)ds LS @'W N s )  u(s)ds 
to 

which completes the proof. 

It is noted that in this case it may not in general be con- 

cluded that *'(s) B(s) u*(s) L q ' ( s )  B(s) u(s) for almost all 

s E. [to,tf]a This is possible in the case where a = R". 
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BACKING OUT OF THE O R I G I N  

If families of optimal trajectories could be obtained, it 

would be expected the optimal control could be synthesized. 

If the expressions for the optimal trajectories were simple 

enough, explicit expressions for the controls could be developed. 

Otherwise the trajectory data could be calculated and placed 

in a storage computer. 

The backing out of the origin procedure consists of 

determining optimal trajectories for the system (1) by starting 

with zero initial conditions and figuratively running the system 

backwards, 

straint set Q is a polyhedron in p , a n d  the system (1) is 

autonomous; that is, A, B, and f are constant. 

It is assumed the target T is the origin, the con- 

Basically the method may be described as follows. 

e’ is taken as a solution of (2) defined on [to,tl]. Then 

u*(t) is found on [to,tl] so that 

tl @‘(SI Bu(s)dB,u*(t) End u ( t >  
to 

- j” tl +‘(SI Bu*(s)ds > 

lying in 51 and subject to the condition that the solution of 

(1) with x(tl) = 0 lies always in Q on [to,tl]. 

-If it can be shown that u*(t) uniquely maximizes 

tl 
/ Jl / ( s )Bu(s)ds  then the response x(t) must be optimal carrying 

x(to) into the origin at time tl* 

an optimal response x(t) 

Each such @’ 

A method for maximizing @‘(s)Bu(s)ds t o  
’ .  

thus determines 

any desired 
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I 

degree of accuracy, while f'ulfilling both the constraints on 

the control u ( t )  and the phase variable x ( t )  is presented below. 

The existence of a qt) maximizing It1 q'(s)Bu(s)ds and 

f u l f i l l i n g  the constraint requirements on u ( t )  and x ( t )  is 

established first . 
EXISTENCE OF A MAxlNIZINQ u* (t ) 

@'(t) is taken on the f i n i t e  interval  [ to , t l ]  as a solution 

For a given u ( t )  defined, measurable, and bounded on of (2), 

the same interval ,  the response x ( t )  with x(t,) = 0 is given 

by the variation of parameters formula. 

where it is noted that t < t,. 
This leads 

m o m  2 ,  Let 

there ex is t s  an 

I - 
t o  the following theorem: 

@(s) be an m-dimensional vector i n  L2[0,T]. 

m-dimensional vector u*(s) E L2[0,T] such that 

Then 

t 
1. 

i n  L2[0,T] for  which 

u*(s) belongs t o  the class F of m-vector functions u(8) 

(a )  Uoj u j ( s )  uIj uniformly on [-O,T]. 

(b )  For a matrix B ( s ) ,  measurable and bounded on [O,T] 

of dimensions n x m and a measurable, bounded n-vector 

f ( s )  defined on [O,T] 

S 
X(S)  =: [B(a)u(a) + f ( a ) ] d ~  

0 

satisfies x ( s )  E Q,  s E [O,T], where 0 is a closed convex sub- 

s e t  of Rn such that 0 E @. 
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2. JA@’(s) u*(s)ds > ,fA*’(s)u(s)ds fo r  a l l  other u ( t )  E F. 
0 - 0  

SKETCH OF PROOF: 

may be easi ly  verified: 

( a )  F i s  bounded. 

(b) F i s  closed. 

( e )  F is convex. 

The following properties of the s e t  FGL2[0,T] 

T 
Mow set L(u) = ,f @’(s)u(s)ds. 

on L2[0,T]. 

continuous. For, using the Schwartz inequality 

Then L is  a l inear  functional 
0 

It w i l l  now be shown that  L is  bounded and hence 

Here [*(s) l , lu(s) l  denote the norms of @(s), u(s)  a t  a given 8 

a s  elements of a finite-dimensional Euclidean space whereas 

/ l$!13 /lull are the noms of these vector functions as elements 

of L2 [O,T]. 

that L is a bounded l inear  functional has been obtained. 

Since 11@11 is f i n i t e  by hypothesia, the r e su l t  

Since /lull i s  bounded i n  F, L(u) i s  bounded above i n  F. 

Since L(u) is bounded above it must have a l ea s t  upper bound M. 

(9) 

Let  ui3 i = 1,2,... be a sequence of functions i n  F such that 

l im L(ui) = M. 
i->oo 

Now a closed, bounded sphere i n  L2 [O,t] i s  weakly compact. 

Hence there i s  a subsequence of the ui, say ui 

u* E L2[0,T] such that l imL(u  Hence L(u*) = M. 

T h i s  may be concluded because F is bounded. F is  not i tsel f  

and an element 
k 

) = L(u*). 
k->oo ik 

i 
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necessarily a sphere in L2[0,T], but it i s  contained i n  a closed 

bounded sphere of L2[0,T] . 
yet  tha t  it l ies i n  F. To show that u* does l i e  i n  F the reader 

i s  referred t o  page 422 of reference 2 where the following theorem 

is stated and indications of the proof are given: 

Thus u* exists but it is not known 

"A convex subset of a locally convex l inea r  topological 

space is x* closed (i.e., closed i n  the weak topology) 

only i f  i t  is closed . ( i .e . ,  closed i n  the  usual topology.) 

Since La [O,T] i s  a local ly  convex l inear  topological space 

it may be concluded that u* E F. 

def in i t ion  of M 

i f  and 

Hence L(u*) = M and hence by 

T T 
1 @'(s)*(a)ds 2 @'(s)u(s)ds 
0 0 

for any u E F. Q.E.D. 

Thus the proof of the  existence of the maximizing 

u* has been obtained. It i s  reasonable t o  suspect t h a t  u* 

i s  unique f o r  almost a l l  i n  some sense. 

A METHOD FOR APPROXIHATING u* FOR A GIVEN p 

Attention is  again res t r ic ted  t o  autonomous systems. 

It is  now supposed that Gc i s  a convex polyhedron given by 

VL.X h CR, #l= 1,2  I... 9 L, ( 11) 

the VL being n dimensional vectors. 

r e s t r a in t  set i2 be given by 

It is required tha t  the  

uoi ui uli, i =5 1,2 , . . . ,m.  ( 13 
A function @ '  is  given on [to,tl] with some f i n a l  

conditions on @'(tl), as a solution of (2). 
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The approximation method basically consists of the 

assumption that u is constant on the intervals to = T~ 5 7 C T ~ ,  

z1 a < 7 p . .  Zn-1 - < 7 < ?,, = tl, where T - T3-1 = x j *  Of J 
V 

= t -t Then it is seen that, if u is the value 3 = 1 0 .  
course 

j-1 

of u(s) on ‘t < T < T j-1 - 

(U consists of treating the v vectors u 

as one vm dimensional vector, I‘ is similarly defined.) 

Now the response to this control u is given by 

each of n components, 3’  

q 

It is desired that this response should not leave the region Q. 

Instead of imposing this condition at every t it is imposed, for 

ease of computation, at each of the times Tj,~l,.*.?vol. It 

is automatically satisfied at T~ = tl* For each 7 j = 0,1,2,...,~-1, 13’ 
‘v=tl 

XIS, )  = - j e -A(S-t)[Bu(S) + f Ids 

I “  
V 

= 2 Dk uk3 the last equality serving to define 
d3 + bj+l 
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d and Dk, k = J+l,...,v. The condition that X(T ) be in Q is 
J 3 
then 

(refer to (11)). This imposes linear restraints on the 

uk, k = j+l,...,v. In addition 

uoi I uw I Uli' 
denoting the component of % in question, for each k. 

Performing (15) for each j, j = O,l,...,v-l it is seen 

(16) and (17) describe v(2n+L) linear constraints upon the 

vector U having vn components. 

Thus there is a fixed vector I' and a variable vector U. 

The problem now is to maximize I' *Ut keeping U subject to the 
$ 

constraints defined by (16) and (17). 
This problem nay be succinctly stated as: 

Maximize r .U, subject to AU - < B, where A is a matrix with 

dimensions v(2n+L), vn and B is a vector of dimension v(2n=tL), 

the inequality being understood to hold between all components 

9 

of the vectors involved. This is called the General Maximization 

Problem of Linear Programing. Thus any furtbr effort in this 

approach must be directed toward finding the best way to solve 

this linear programing problem. It is observed that the matrix 

whose entries are 
V 
I: Dkuk, A= 1,2,...,L, and j = O,l,...,v-l has 

k=j+1 

a certain "block triangular" character, T h i s  could conceivably 



simplify the linear programming. 

It is also noted that the constraints on U are independent 

of the choice of 9 so that the constraint set is fixed once and 

for all. Because a large number of $t will undoubtedly be used, 

attention should be directed to the possibility that the U1 

selected for one @, could be used as an initial guess in some 

sort of an iteration process for  finding U2 corresponding to 

a q2 whose initial conditions were near those of 

CONCLUSIONS 

A modified form of the maximum principle is seen to lead 

to a formally correct "backing out" procedure. 

of this procedure rests on linear programing. 
The effectiveness 
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